Respuesta :
Answer:
[tex]\frac{PQR}{SQR}[/tex]
Step-by-step explanation:
An isosceles triangle has two equal sides and the two opposite angles to the sides to be equal.
Given that; RP = RS, RQ and PS are common,
RP = SQ (opposite sides of parallelogram RPQS)
PQ = RS (opposite sides of parallelogram RPQS)
ΔRPS = ΔQPS (congruence property)
Thus comparing triangles PQR and SQR,
[tex]\frac{PQ}{SQ}[/tex] = [tex]\frac{PR}{SR}[/tex] (similarity property)
<PRS = <PRQ + <SRQ (bisection of included <PRS)
<PQS = <PQR + <SQR (similatity property to <PRS)
[tex]\frac{PRQ}{SRQ}[/tex] Â = [tex]\frac{SQR}{PQR}[/tex] (congruence property)
But, SRQ = PQR
So that;
    [tex]\frac{PRQ}{SQR}[/tex]
Therefore by Side-Angle-Side (SAS), the required additional fact is: Â [tex]\frac{PRQ}{SQR}[/tex]