Respuesta :

Answer:

7. A ≈ 60.1°

8. B ≈ 34.0°

9. C ≈ 33.1°

Step-by-step explanation:

7.

The Law of Sines states that for a triangle with lengths a, b, and c and angles A, B, and C: [tex]\frac{a}{sinA}= \frac{b}{sinB} =\frac{c}{sinC}[/tex].

Here, we can say that a = 7, b = 8, and B = 82, and we want to find A. Plug these values in:

[tex]\frac{a}{sinA} =\frac{b}{sinB}[/tex]

[tex]\frac{7}{sinA} =\frac{8}{sin(82)}[/tex]

Solve for A:

A ≈ 60.1°

8.

Again, use the Law of Sines as above:

[tex]\frac{b}{sinB} =\frac{c}{sinC}[/tex]

[tex]\frac{14}{sin(37)} =\frac{13}{sinB}[/tex]

Solve for B:

B ≈ 34.0°

9.

Use the Law of Sines as above:

[tex]\frac{a}{sinA} =\frac{c}{sinC}[/tex]

[tex]\frac{17}{sin(68)} =\frac{10}{sinC}[/tex]

Solve for C:

C ≈ 33.1°

Answer:

7. 60.1°

8. 34.0°

9. 33.1°

Step-by-step explanation:

7. 7/sinA = 8/sin82

sinA = 7 × sin82/8

sinA = 0.8664845601

A = 60.05265736

8. 14/sin37 = 13/sinB

sinB = 0.5588282358

B = 33.97480112

9. 10/sinC = 17/sin68

sinC = 10 × sin68/17

sinC = 0.5454022674

C = 33.05215746