) The angular acceleration of the disk is defined by ???? = 3t 2 + 12 rad/s, where t is in seconds. If the disk is originally rotating at ????0 = 12 rad/s. a) Determine the angular motion when t = 2 s. b) Determine the magnitude of the velocity of point A on the disk when t = 2 s. c) Determine the normal and tangential components of acceleration of point A on the disk when t = 2 s.

Respuesta :

Answer:

a) [tex]\theta = 52\,rad[/tex], b) [tex]v_{A} = 44\cdot r \,\frac{m}{s}[/tex], c) [tex]a_{A,n} = 1936\cdot r\,\frac{m}{s^{2}}[/tex], [tex]a_{A,t} = 24\cdot r\,\frac{m}{s^{2}}[/tex]

Explanation:

a) The angular motion is obtained by integrating the angular acceleration function twice:

[tex]\alpha = 3\cdot t^{2} + 12[/tex]

[tex]\omega = t^{3} + 12\cdot t + 12[/tex]

[tex]\theta = \frac{1}{4}\cdot t^{4} + 6\cdot t^{2} + 12\cdot t[/tex]

The angular motion when t = 2 s. is:

[tex]\theta = \frac{1}{4}\cdot (2\,s)^{4} + 6\cdot (2\,s)^{2} + 12\cdot (2\,s)[/tex]

[tex]\theta = 52\,rad[/tex]

b) Let be [tex]r[/tex] the distance between A and the rotation axis, measured in meters. The magnitude of the angular velocity when t = 2 s. is:

[tex]\omega = (2\,s)^{3} + 12\cdot (2\,s) + 12[/tex]

[tex]\omega = 44\,\frac{rad}{s}[/tex]

Finally, the magnitude of the velocity is:

[tex]v_{A} = 44\cdot r \,\frac{m}{s}[/tex]

c) The angular acceleration of the disk when t = 2 s. is:

[tex]\alpha = 3\cdot (2\,s)^{2} + 12[/tex]

[tex]\alpha = 24\,\frac{rad}{s^{2}}[/tex]

Lastly, the normal and tangential components at point A are, respectively:

[tex]a_{A,n} = \omega^{2}\cdot r[/tex]

[tex]a_{A,n} = \left(44\right)^{2}\cdot r[/tex]

[tex]a_{A,n} = 1936\cdot r\,\frac{m}{s^{2}}[/tex]

[tex]a_{A,t} = \alpha \cdot r[/tex]

[tex]a_{A,t} = 24\cdot r\,\frac{m}{s^{2}}[/tex]