contestada

Calculate the concentration of Hg2+ ions in a saturated solution of HgS(s). How many Hg^2+ ions are in 1000 L of the solution.

Respuesta :

Answer:

The concentration of  [tex]Hg^{2+}[/tex] is   [tex][Hg^{2+}]= 1.26 *10^{-27} mol/L[/tex]

The number of [tex]Hg^{2+}[/tex] ion  is  [tex]A = 0.7588\ ions[/tex]

Explanation:

Generally the solubility product constant of HgS(s)  is  [tex]k_{sp} = 1.6*10^{-54}[/tex]

    This  solubility product constant is mathematically represented as

                  [tex]K_{sp} = [Hg^{2+}][S^{2-}][/tex]

Since the HgS is saturated it implies that the concentration of sulfur ion is the same as that of mercury ion s

               [tex][Hg^{2+}]= [S^{2-}] = z[/tex]

=>    [tex]K_{sp} =z^2[/tex]

=>   [tex]z = \sqrt{K_{sp}}[/tex]

substituting values

      [tex]z = \sqrt{1.6 *10^{-54}}[/tex]

      [tex]z = 1.26*10^{-27}[/tex]

=>  [tex][Hg^{2+}]= [S^{2-}] = 1.26 *10^{-27} mol/L[/tex]

From above [tex]1.26 *10^{-27}[/tex] mole of [tex][Hg^{2+}][/tex]  is equal to 1 L

Then x mole of [tex][Hg^{2+}][/tex]   will be equal to 1000 L

 Therefore

                  [tex]x = \frac{1.26*10^{-27} *1000}{1}[/tex]

=>                [tex]x = 1.26*10^{-24} \ moles[/tex]        

Now the number of  [tex]Hg^{2+}[/tex] ions are in 1000 L of the solution is mathematically represented as

            [tex]A = x * \frac{N_A}{1 mole}[/tex]

Where [tex]N_A[/tex] is the avogadro's constant which has a value of  

       [tex]N_A = 6.022*10^{23} \ ions[/tex]

 Substituting value

        [tex]A = 1.26 *10^{-24} * \frac{6.022 *10^{23}}{1}[/tex]

         [tex]A = 0.7588\ ions[/tex]