Respuesta :

Answer:

The answer for the equation of a circle:

[tex]x^2+y^2 = 10[/tex]

Step-by-step explanation:

The equation of a circle:

[tex](x-h)^2+(y-k)^2 = r^2[/tex] (where [tex](h,k)[/tex] represents the "Center", [tex](x,y)[/tex] represents a "Coordinate", and [tex]r[/tex] represents the "Radius").

-Use the center [tex](0,0)[/tex] and the coordinate [tex](-10,0)[/tex] for the the equation:

[tex](10-0)^2+(0-0)^2 = r^2[/tex]

-Solve the equation:

[tex](10-0)^2+(0-0)^2 = r^2[/tex]

[tex]10+0 = r^2[/tex]

[tex]10 = r^2[/tex]

[tex]\sqrt{10}= \sqrt{r^2}[/tex]

[tex]\sqrt{10} = r[/tex]

After you have the radius, use the center [tex](0,0)[/tex]and the radius [tex]\sqrt{10}[/tex] for the equation of a circle:

[tex]x^2+y^2 = 10[/tex]

So, therefore, the answer is [tex]x^2+y^2 = 10[/tex].