Answer:
y = [tex]\frac{1}{3} x+1[/tex]
Step-by-step explanation:
m = [tex]m = \frac{change in y}{change in x} \\m = \frac{3 - (2)}{6 - (3)}\\m = \frac{1}{3} \\Find the value of b using the equation of a line \\y = mx+b\\y =( \frac{1}{3} )x + b\\2 =( \frac{1}{3} ) * (3) + b\\cancel common factor\\1 + b = 2\\b = 1\\y = \frac{1}{3} x + 1[/tex]