Respuesta :

Answer:

12.

Step-by-step explanation:

The given equation is

[tex]x^2+10x+y^2-4y=71[/tex]

It can be written as

[tex](x^2+10x)+(y^2-4y)=71[/tex]

[tex](x^2+10x+5^2)+(y^2-4y+2^2)=71+5^2+2^2[/tex]

[tex](x+5)^2+(y-2)^2=71+25+4[/tex]

[tex](x+5)^2+(y-2)^2=10^2[/tex]     ...(i)

The standard form of a circle is

[tex](x-h)^2+(y-k)^2=r^2[/tex]     ...(ii)

where, (h,k) is center and r is radius.

From (i) and (ii), we get

[tex]h=-5,k=2,r=10[/tex]

The center of circle is (-5,2) and radius is 10. So, the maximum value of y is

[tex]Max(y)=k+r=2+10=12[/tex]

Therefore, the maximum value of y is 12.