Respuesta :
Answer:
[tex]27.6^\circ[/tex]
Step-by-step explanation:
Given:
A [tex]\triangle RST[/tex] with [tex]\angle T =90 ^\circ[/tex]
ST = 44 feet
TR = 84 feet
To find:
[tex]\angle R = ?[/tex]
Solution:
Please have a look at the attached figure for clear view of the given dimensions of the right angled triangle.
Here, we can use trigonometric formula to find out the [tex]\angle R[/tex].
We know that formula for tangent of angle [tex]\theta[/tex] is given as:
[tex]tan \theta = \dfrac{\text{Perpendicular}}{\text{Base}}[/tex]
Here, Perpendicular for [tex]\angle R[/tex] is side ST and
Base is side TR.
Putting the values in above tangent formula:
[tex]tan R = \dfrac{ST}{TR}\\\Rightarrow tan R = \dfrac{44}{84}\\\Rightarrow tan R = 0.523\\\Rightarrow \angle R = 27.6^\circ[/tex]
Hence, [tex]\angle R = 27.6^\circ[/tex] is the answer.