Answer:
[tex]|p-q|-(|p|-|q|) = 20[/tex]
Step-by-step explanation:
First let's find the value of 'p-q':
[tex]p - q = 9i + 12j - (-6i - 8j)\\p - q = 9i + 12j + 6i + 8j\\p - q = 15i + 20j\\[/tex]
To find |p-q| (module of 'p-q'), we can use the formula:
[tex]|ai + bj| = \sqrt{a^{2}+b^{2}}[/tex]
Where 'a' is the coefficient of 'i' and 'b' is the coefficient of 'j'
So we have:
[tex]|p - q| = |15i + 20j| = \sqrt{15^{2}+20^{2}} = 25[/tex]
Now, we need to find the module of p and the module of q:[tex]|p| = |9i + 12j| = \sqrt{9^{2}+12^{2}} = 15[/tex]
[tex]|q| = |-6i - 8j| = \sqrt{(-6)^{2}+(-8)^{2}} = 10[/tex]
Then, evaluating |p-q|-{|p|-|q|}, we have:
[tex]|p-q|-(|p|-|q|) = 25 - (15 - 10) = 25 - 5 = 20[/tex]