Answer:
[tex]\frac{2(vt-d)}{t^2}=a[/tex]
Step-by-step explanation:
Expression to calculate the displacement 'd' is,
d = vt - [tex]\frac{1}{2}at^{2}[/tex]
By subtracting vt from both the sides of the equation.
d - vt = -[tex]\frac{1}{2}at^2[/tex]
vt - d = [tex]\frac{1}{2}at^{2}[/tex] --------(1)
Multiplying with 2 on both the sides of the equation,
2(vt - d) = at² --------(2)
Dividing by 't²' on both the sides of the equation,
[tex]\frac{2(vt-d)}{t^2}=\frac{at^2}{t^2}[/tex]
[tex]\frac{2(vt-d)}{t^2}=a[/tex] --------(3)
Therefore, expression to calculate the acceleration 'a' will be
[tex]\frac{2(vt-d)}{t^2}=a[/tex]