Respuesta :

Answer:

[tex]3.\ \dfrac{3x}{11x}, \dfrac{6}{22}, \dfrac{9}{33},\dfrac{12}{44}[/tex]

[tex]4. -18\\5.\ 400[/tex]

Step-by-step explanation:

Solution 3:

Equivalent fractions to are to [tex]\frac{3}{11}[/tex] be found out.

Method: By Multiplying both the denominator and numerator with the same number, we can easily find equivalent fractions.

1. Multiply with 2:

[tex]\dfrac{3 \times 2}{11 \times 2}\\\Rightarrow \dfrac{6}{22}[/tex]

2. Multiply with 3:

[tex]\dfrac{3 \times 3}{11 \times 3}\\\Rightarrow \dfrac{9}{33}[/tex]

3. Multiply with 4:

[tex]\dfrac{3 \times 4}{11 \times 4}\\\Rightarrow \dfrac{12}{44}[/tex]

If we try to write in variable form, it can be written as:

[tex]\dfrac{3x}{11x}[/tex]

where x is any number.

---------------

Solution 4:

[tex](2x-10)[/tex] when [tex]x=-4[/tex]

[tex]2 \times (-4) -10\\\Rightarrow -8 -10\\\Rightarrow -18[/tex]

------------

Solution 5:

[tex](10a)^2, a=-2\\\Rightarrow \{10 \times (-2)\}^2\\\Rightarrow (-20)^2\\\Rightarrow 400[/tex]