Respuesta :

Answer:

Four steps of multiplying the rational expressions and their examples are given below

Step 1

Factor the expression acting as the  numerator and denominator of both functions

[tex]\frac{x+3}{x^2-3x}\cdot\frac{x}{x^2+9y+18} = \frac{(x+3)}{(x)(x-3)}\cdot\frac{x}{(x+6)(x+3)}[/tex]

Step 2

Write both of the expression being multiplied as one expression

[tex]\frac{(x+3)}{(x)(x-3)}\cdot\frac{x}{(x+6)(x+3)}= \frac{(x+3)(x)}{(x)(x-3)(x+6)(x+3)}[/tex]

Step 3

Simplify the rational expression by cutting out the common terms

[tex]\frac{(x+3)(x)}{(x)(x-3)(x+6)(x+3)} = \frac{1}{(x-3)(x+6)}[/tex]

Step 4

Multiply any remaining factors in numerator or denominator.

[tex]\frac{1}{(x-3)(x+6)}=\frac{1}{x^2+3x-18}[/tex]