The end behaviour for the polynomial function h(x)=βˆ’x3+x4βˆ’2x+1 h ( x ) = - x 3 + x 4 - 2 x + 1 is: xβ†’βˆ’[infinity], yβ†’βˆ’[infinity] x β†’ - [infinity] , y β†’ - [infinity] and xβ†’[infinity], yβ†’[infinity] x β†’ [infinity] , y β†’ [infinity] xβ†’βˆ’[infinity], yβ†’[infinity] x β†’ - [infinity] , y β†’ [infinity] and xβ†’[infinity], yβ†’[infinity] x β†’ [infinity] , y β†’ [infinity] xβ†’βˆ’[infinity], yβ†’βˆ’[infinity] x β†’ - [infinity] , y β†’ - [infinity] and xβ†’[infinity], yβ†’βˆ’[infinity] x β†’ [infinity] , y β†’ - [infinity] Unable to tell.

Respuesta :

Answer:

[tex]\text{As } x \to \infty, y \to \infty,$and as x \to -\infty, y \to \infty[/tex]

Step-by-step explanation:

Given the polynomial function: [tex]h(x)=-x^3+x^4-2x+1[/tex]

To examine its end behavior, we create a table of values that we can then examine.

[tex]\left|\begin{array}{c|c}x&h(x)\\--&--\\-4&329\\-3&115\\-2&29\\-1&5\\0&1\\1&-1\\2&5\\3&49\\4&185\end{array}\right|[/tex]

From the table, we see a repeating pattern of positive values of h(x) with h(1)=-1 being an axis of symmetry.

Therefore, as:

[tex]x \to \infty, h(x) \to \infty\\x \to -\infty, h(x) \to \infty[/tex]