The Thomson model of a hydrogen atom is a sphere of positive charge with an electron (a point charge) at its center. The total positive charge equals the electronic charge e. Prove that when the electron is at a distance r from the center of the sphere of positive charge, it is attracted with a force F=\frac{e^2r}{4\pi\varepsilon_oR^3} where R is the radius of the sphere.

Respuesta :

Answer:

E = (1 / 4π ε₀ )  q r / R³

Explanation:

Thomson's stable model that the negative charge is mobile within the atom and the positive charge is uniformly distributed, to calculate the force we can use Coulomb's law

       F = K q₁ q₂ / r²

we used law Gauss

Ф = ∫ E .dA = q_{int} /ε₀

E 4π r² = q_{int} /ε₀  

E = q_{int} / 4π ε₀ r²

we replace the charge inside  

E = (1 / 4π ε₀ r²) ρ 4/3 π r³  

E = ρ r / 3 ε₀

the density for the entire atom is  

ρ = Q / V  

V = 4/3 π R³  

we substitute  

E = (r / 3ε₀ ) Q 3/4π R³  

E = (1 / 4π ε₀ ) q r / R³