Answer:
The voltage is [tex]V = 418.60 \ Volts[/tex]
Explanation:
From the question we are told that
The area of the both plate is [tex]A = 7.00 *10^{-3} \ m^2[/tex]
The distance between the plate is [tex]d = 4.80*10^{-4}\ m[/tex]
The magnitude of the charge is [tex]q = 5.40 *10^{-8} \ C[/tex]
The capacitance of the capacitor that consist of the two plates is mathematically represented as
[tex]C = \frac{\epsilon _o A}{d}[/tex]
Where [tex]\epsilon_o[/tex] is the permitivity of free space with a value [tex]e = 8.85*10^{-12} \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]
So
[tex]C = \frac{8.85*10^{-12} * (7* 10^{-3})}{ 4.8*10^{-4}}[/tex]
[tex]C = 1.29 *10^{-10} \ F[/tex]
The potential difference between the plate is mathematically represented as
[tex]V = \frac{ Q}{C }[/tex]
[tex]V = \frac{ 5.4*10^{-8}}{1.29 *10^{-10}}[/tex]
[tex]V = 418.60 \ Volts[/tex]