Respuesta :
Answer:
[tex]x=\frac{12}{7} \\y=\frac{12}{5} \\z=-12[/tex]
Step-by-step explanation:
Let's re-write the equations in order to get the variables as separated in independent terms as possible \:
First equation:
[tex]\frac{xy}{x+y} =1\\xy=x+y\\1=\frac{x+y}{xy} \\1=\frac{1}{y} +\frac{1}{x}[/tex]
Second equation:
[tex]\frac{xz}{x+z} =2\\xz=2\,(x+z)\\\frac{1}{2} =\frac{x+z}{xz} \\\frac{1}{2} =\frac{1}{z} +\frac{1}{x}[/tex]
Third equation:
[tex]\frac{yz}{y+z} =3\\yz=3\,(y+z)\\\frac{1}{3} =\frac{y+z}{yz} \\\frac{1}{3}=\frac{1}{z} +\frac{1}{y}[/tex]
Now let's subtract term by term the reduced equation 3 from the reduced equation 1 in order to eliminate the term that contains "y":
[tex]1=\frac{1}{y} +\frac{1}{x} \\-\\\frac{1}{3} =\frac{1}{z} +\frac{1}{y}\\\frac{2}{3} =\frac{1}{x} -\frac{1}{z}[/tex]
Combine this last expression term by term with the reduced equation 2, and solve for "x" :
[tex]\frac{2}{3} =\frac{1}{x} -\frac{1}{z} \\+\\\frac{1}{2} =\frac{1}{z} +\frac{1}{x} \\ \\\frac{7}{6} =\frac{2}{x}\\ \\x=\frac{12}{7}[/tex]
Now we use this value for "x" back in equation 1 to solve for "y":
[tex]1=\frac{1}{y} +\frac{1}{x} \\1=\frac{1}{y} +\frac{7}{12}\\1-\frac{7}{12}=\frac{1}{y} \\ \\\frac{1}{y} =\frac{5}{12} \\y=\frac{12}{5}[/tex]
And finally we solve for the third unknown "z":
[tex]\frac{1}{2} =\frac{1}{z} +\frac{1}{x} \\\\\frac{1}{2} =\frac{1}{z} +\frac{7}{12} \\\\\frac{1}{z} =\frac{1}{2}-\frac{7}{12} \\\\\frac{1}{z} =-\frac{1}{12}\\z=-12[/tex]