Solve for x in the equation x squared minus 4 x minus 9 = 29. x = 2 plus-or-minus StartRoot 42 EndRoot x = 2 plus-or-minus StartRoot 33 EndRoot x = 2 plus-or-minus StartRoot 34 EndRoot x = 4 plus-or-minus StartRoot 42 EndRoot

Respuesta :

Answer:

[tex]x=2$\pm$\sqrt{42}[/tex]

Step-by-step explanation:

The given equation is:

[tex]x^{2} -4x-9=29\\\Rightarrow x^{2} -4x-9-29=0\\\Rightarrow x^{2} -4x-38=0[/tex]

Formula:

A quadratic equation [tex]ax^{2} +bx+c=0[/tex] has the following roots:

[tex]x=\dfrac{-b+\sqrt D}{2a}\ and\\x=\dfrac{-b-\sqrt D}{2a}[/tex]

Where [tex]D= b^{2} -4ac[/tex]

Comparing the equation with [tex]ax^{2} +bx+c=0[/tex]

a = 1

b = -4

c= -38

Calculating D,

[tex]D= (-4)^{2} -4(1)(-38)\\\Rightarrow D = 16+152 = 168[/tex]

Now, finding the roots:

[tex]x=\dfrac{-(-4)+\sqrt {168}}{2\times 1}\\\Rightarrow x=\dfrac{4+2\sqrt {42}}{2}\\\Rightarrow x=2+\sqrt {42}\\and\\x=\dfrac{-(-4)-\sqrt {168}}{2\times 1}\\\Rightarrow x=\dfrac{4-2\sqrt {42}}{2}\\\Rightarrow x=2-\sqrt {42}[/tex]

So, the solution is:

[tex]x=2$\pm$\sqrt{42}[/tex]

Answer is A or the first one