Respuesta :

Answer:

[tex] \boxed{\sf - 2 {p}^{2} - 11p - 35} [/tex]

Step-by-step explanation:

[tex] \sf \implies - 2 {(p + 4)}^{2} - 3 + 5p \\ \\ \sf \implies - 2( {p}^{2} + 2(p)(4) + {4}^{2} ) - 3 + 5p \\ \\ \sf \implies - 2( {p}^{2} + 8p + 16) - 3 + 5p \\ \\ \sf \implies (( - 2) \times {p}^{2} ) + (( - 2) \times 8p) + ( ( - 2) \times 16) - 3 + 5p \\ \\ \sf \implies (- 2 {p}^{2} ) + ( - 16p ) + (- 32) - 3 + 5p \\ \\ \sf \implies - 2 {p}^{2} - 16p - 32 - 3 + 5p \\ \\ \sf \implies - 2 {p}^{2} + (- 16p + 5p) + ( - 32 - 3) \\ \\ \sf \implies - 2 {p}^{2} - 11p - 35[/tex]