Respuesta :

Answer:

Center [tex]= (0,0)[/tex]

Vertices  [tex]=(-\sqrt{7},0)\text{ and }(\sqrt{7},0)[/tex]

Foci [tex]=(-2,0)\text{ and }(2,0)[/tex].

Step-by-step explanation:

The standard form of an ellipse is

[tex]\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1[/tex]    ...(1)

where, a>b, (0,0) is center, (±a,0) are vertices and (±c,0) are foci.

[tex]c=\sqrt{a^2-b^2}[/tex]

The given equation of ellipse is

[tex]3x^2+7y^2=21[/tex]

Divide both sides by 21.

[tex]\dfrac{3x^2+7y^2}{21}=\dfrac{21}{21}[/tex]

[tex]\dfrac{x^2}{7}+\dfrac{y^2}{3}=1[/tex]    ...(2)

On comparing (1) and (2), we get

[tex]a^2=7,b^2=3[/tex]

[tex]a=\sqrt{7},b=\sqrt{3}[/tex]

Now,

[tex]c=\sqrt{a^2-b^2}=\sqrt{7-3}=\sqrt{4}=2[/tex]

Therefore,

Center [tex]= (0,0)[/tex]

Vertices [tex]=(\pm a,0)=(\pm \sqrt{7},0}=(-\sqrt{7},0)\text{ and }(\sqrt{7},0)[/tex]

Foci [tex]=(\pm c, 0)=(\pm 2,0)=(-2,0)\text{ and }(2,0)[/tex].