Respuesta :

Answer:

[tex] \frac{x - 4}{x - 7} [/tex]

Step-by-step explanation:

[tex] \frac{ {x}^{2} + 2x - 24 }{ {x}^{2} - x - 42 } \\ \frac{(x + 6) (x - 4)}{(x - 7)(x + 6)} \:the \: term \: will \: be \: simplified (x + 6) \\ and \: we \: will \: be \: left \: with \: \frac{x - 4}{x - 7} [/tex]

Answer:

Step-by-step explanation:

x² + 2x - 24 = x² + 6x  - 4x - 4 * 6

                   = x(x + 6) - 4(x + 6)

                   = (x + 6) (x - 4)

x² - x - 42 = x² -7x + 6x - 6 * 7

                = x(x - 7) + 6(x - 7)

               =  (x - 7) (x + 6)

[tex]\frac{x^{2}+2x-24}{x^{2}-x-42}=\frac{(x + 6)*(x-4)}{(x+6)(x-7)}\\\\\\=\frac{x-4}{x-7}[/tex]