Answer:
Explanation:
Given that,
The area of glass [tex]A_g[/tex] = [tex]0.11m^2[/tex]
The thickness of the glass [tex]t_g=4mm=4\times10^-^3m[/tex]
The area of the styrofoam [tex]A_s=11m^2[/tex]
The thickness of the styrofoam [tex]t_s=0.20m[/tex]
The thermal conductivity of the glass [tex]k_g=0.80J(s.m.C^o)[/tex]
The thermal conductivity of the styrofoam [tex]k_s=0.010J(s.m.C^o)[/tex]
Inside and outside temperature difference is ΔT
The heat loss due to conduction in the window is
[tex]Q_g=\frac{k_gA_g\Delta T t}{t_g} \\\\=\frac{(0.8)(0.11)(\Delta T)t}{4.0\times 10^-^3}\\\\=(22\Delta Tt)j[/tex]
The heat loss due to conduction in the wall is
[tex]Q_s=\frac{k_sA_s\Delta T t}{t_g} \\\\=\frac{(0.010)(11)(\Delta T)t}{0.20}\\\\=(0.55\Delta Tt)j[/tex]
The net heat loss of the wall and the window is
[tex]Q=Q_g+Q_s\\\\=\frac{k_gA_g\Delta T t}{t_g}+\frac{k_sA_s\Delta T t}{t_g}\\\\=(22\Delta Tt)j +(0.55\Delta Tt)j \\\\=(22.55\Delta Tt)j[/tex]
The percentage of heat lost by the window is
[tex]=\frac{Q_g}{Q}\times 100\\\\=\frac{22\Delta T t}{22.55\Delta T t}\times 100\\\\=97.6 \%[/tex]