Respuesta :

Answer:

square root of 192

Step-by-step explanation:

12 cos 30 degrees + 2 tan 60 degrees

= 12* (root 3 /2) + 2* root 3  [as cos 30= root 3/2 and tan 60 = root 3]

=6 root 3 + 2 root 3

= 8 root 3

= square root of 64*3

=square root of 192

= square root of k [ where k = 192 = integer]

Trigonometry ratios are used to represent sine, cosine and tangent functions

The value of [tex]\mathbf{12cos(30) + 2tan(60)}[/tex] is [tex]\mathbf{\sqrt {192}}[/tex]

The trigonometry equation is given as:

[tex]\mathbf{12cos(30) + 2tan(60)}[/tex]

In trigonometry,

[tex]\mathbf{cos(30^o) = \frac{\sqrt 3}{2}}[/tex]

[tex]\mathbf{tan(60^o) = \sqrt 3}[/tex]

So, we have:

[tex]\mathbf{12cos(30) + 2tan(60) = 12 \times \frac{\sqrt 3}{2} + 2 \times \sqrt 3}[/tex]

Evaluate all products

[tex]\mathbf{12cos(30) + 2tan(60) = 6\sqrt 3 + 2 \sqrt 3}[/tex]

Add roots

[tex]\mathbf{12cos(30) + 2tan(60) = 8 \sqrt 3}[/tex]

Express 8 as square root of 64

[tex]\mathbf{12cos(30) + 2tan(60) = \sqrt {64} \times \sqrt 3}[/tex]

So, we have:

[tex]\mathbf{12cos(30) + 2tan(60) = \sqrt {64 \times 3}}[/tex]

Evaluate product

[tex]\mathbf{12cos(30) + 2tan(60) = \sqrt {192}}[/tex]

The form is given as:

[tex]\mathbf{\sqrt {k}}[/tex]

By comparison, we have:

[tex]\mathbf{k = 192}[/tex]

Hence, the value of [tex]\mathbf{12cos(30) + 2tan(60)}[/tex] is [tex]\mathbf{\sqrt {192}}[/tex]

Read more about trigonometry ratios at:

https://brainly.com/question/24888715