Respuesta :
Answer:
[tex]802[/tex]
Step-by-step explanation:
[tex]18^3=5832[/tex]
[tex]19^3=6859[/tex]
[tex]2018+2019+2020=6057[/tex]
[tex]6859-6057=802[/tex]
Check.
[tex]6057+802=6859[/tex]
[tex]\sqrt[3]{6859} =19[/tex]
Answer:
2019.
Step-by-step explanation:
Let x = 2018, then x + 1 = 2019 and x + 2 = 2020.
x(x + 1)(x + 2)
= x(x^2 + 3x + 2)
= x^3 + 3x^2 + 2x ................(A)
Now the perfect cube of x + 1 is:
(x + 1)^3 = x^3 + 3x^2 + 3x + 1
If we add x + 1 to (A) we get this expression so the answer is x + 1
= 2019.