Answer:
(f+g)(2) = 10
Step-by-step explanation:
f(x)=2x^2+3x
g(x)=x-2
(f+g)(x) will be sum of f(x) and g(x)
(f+g)(x) = 2x^2+3x + x - 2 = 2x^2+4x - 2
we have to find (f+g)(2), for that we will put x = 2
(f+g)(x) = 2x^2+4x - 2
[tex](f+g)(2) = 2*2^2+2*2 - 2\\(f+g)(2) = 2*4+4 - 2\\(f+g)(2) = 8+4 - 2 = 10[/tex]
Thus, (f+g)(2) is 10.