Find StartFraction dy Over dx EndFraction for y equals StartFraction negative 5 x cubed minus 5 x squared plus 3 Over negative 5 x Superscript 4 Baseline plus 2 EndFraction . Do not simplify.

Respuesta :

Answer:

[tex]\dfrac{dy}{dx}=\dfrac{(-5x^4+2)(-15x^2-10x)+(-5x^3-5x^2+3)(-20x^3)}{(-5x^4+2)^2}[/tex]

Step-by-step explanation:

Given: [tex]y=\dfrac{-5x^3-5x^2+3}{-5x^4+2}[/tex]

We are required to find the derivative of y with respect to x,  [tex]\dfrac{dy}{dx}[/tex] .

We apply the quotient rule:

For a fractional expression,

[tex]\dfrac{u}{v},$ \dfrac{dy}{dx}=\dfrac{vu'+uv'}{v^2}[/tex]

[tex]u=-5x^3-5x^2+3,$ $u'=-15x^2-10x\\\\v=-5x^4+2, v'=-20x^3[/tex]

[tex]\dfrac{dy}{dx}=\dfrac{(-5x^4+2)(-15x^2-10x)+(-5x^3-5x^2+3)(-20x^3)}{(-5x^4+2)^2}[/tex]

Since we are asked not to simplify, we simply leave our answer in the substituted form above.