Answer:
The expression as a sum of terms is [tex]2\cdot a^{\frac{3}{2} } - 4\cdot a^{-\frac{1}{2} }[/tex].
Step-by-step explanation:
The expression to be rewritten has the following form:
[tex]\sqrt{a} \cdot (2\cdot a^{2}-\frac{4}{a} )[/tex]
A polynomial as a sum of terms consists in a sum of terms of the form [tex]c_{i} \cdot a^{k(i)}[/tex], where [tex]c_{i}[/tex] and [tex]k_{i}[/tex] are the i-th coefficient and exponent. The expression has to be expanded to create the sum of terms:
[tex]a^{\frac{1}{2} }\cdot (2\cdot a^{2} - 4\cdot a^{-1})[/tex]
[tex]2\cdot a^{1 + \frac{1}{2} } - 4\cdot a^{-1+\frac{1}{2} }[/tex]
[tex]2\cdot a^{\frac{3}{2} } - 4\cdot a^{-\frac{1}{2} }[/tex]
The expression as a sum of terms is [tex]2\cdot a^{\frac{3}{2} } - 4\cdot a^{-\frac{1}{2} }[/tex].