The radius r of a sphere is increasing at a rate of 3 inches per minute. (a) Find the rate of change of the volume when r = 9 inches. in.3/min (b) Find the rate of change of the volume when r = 37 inches. in.3/min

Respuesta :

Answer:

[tex]\frac{dV}{dt}[/tex]  = 1017.87 in³/min

[tex]\frac{dV}{dt}[/tex] = 17203.35 in³/min

Step-by-step explanation:

given data

radius r of a sphere is increasing at a rate = 3 inches per minute

[tex]\frac{dr}{dt}[/tex]  = 3

solution

we know volume of sphere is V = [tex]\frac{4}{3} \pi r^3[/tex]

so [tex]\frac{dV}{dt} = \frac{4}{3} \pi r^2 \frac{dr}{dt}[/tex]  

and when r = 9

so rate of change of the volume will be

rate of change of the volume [tex]\frac{dV}{dt} = \frac{4}{3} \pi (9)^2 (3)[/tex]

[tex]\frac{dV}{dt}[/tex]  = 1017.87 in³/min

and

when r = 37 inches

so rate of change of the volume will be

rate of change of the volume [tex]\frac{dV}{dt} = \frac{4}{3} \pi (37)^2 (3)[/tex]

[tex]\frac{dV}{dt}[/tex] = 17203.35 in³/min