Two blocks of rubber (B) with a modulus of rigidity G = 14 MPa are bonded to rigid supports and to a rigid metal plate A. Knowing that c = 80 mm and P = 46 kN, determine the smallest allowable dimensions a and b of the blocks if the shearing stress in the rubber is not to exceed 1.4 MPa and the deflection of the plate is to be at least 7 mm.

Respuesta :

Lanuel

Answer:

a = 0.07m or 70mm

b = 0.205m or 205mm

Explanation:

Given the following data;

Modulus of rigidity, G = 14MPa=14000000Pa.

c = 80mm = 0.08m.

P = 46kN=46000N.

Shearing stress (r) in the rubber shouldn't exceed 1.4MPa=1400000Pa.

Deflection (d) of the plate is to be at least 7mm = 0.007m.

From shearing strain;

[

[tex]Modulus Of Elasticity, E = \frac{d}{a} =\frac{r}{G}[/tex]

Making a the subject formula;

[tex]a = \frac{Gd}{r}[/tex]

Substituting into the above formula;

[tex]a = \frac{14000000*0.007}{1400000}[/tex]

[tex]a = \frac{98000}{1400000}[/tex]

[tex]a = 0.07m or 70mm[/tex]

a = 0.07m or 70mm.

Also, shearing stress;

[tex]r = \frac{P}{2bc}[/tex]

Making b the subject formula;

[tex]b = \frac{P}{2cr}[/tex]

Substituting into the above equation;

[tex]b = \frac{46000}{2*0.08*1400000}[/tex]

[tex]b = \frac{46000}{224000}[/tex]

[tex]b = 0.205m or 205mm[/tex]

b = 0.205m or 205mm