Respuesta :
Answer:
Therefore, the new rotation rate of the satellite is 6.3 rev/s.
Explanation:
The expression for conservation of the angular momentum (L) is
[tex]L_{i} = L_{f} I_{i}\times\omega_{i} = I_{f}\times\omega_{f}[/tex]
Where
[tex]I_{i}\ and \ \omega_{i}[/tex] initial moment of inertia and angular velocity
[tex]I_{f}\ and \ \omega_{f}[/tex] is the final moment of inertia and angular velocity
The expression of moment of inertia of the satellite (a solid sphere) is
[tex]I_{i} = \frac{2}{5}m_{s}r^{2}[/tex]
Where [tex]m_{s}[/tex] is the satellite mass
r is the  radus of the sphere
Substititute 1900kg for m and 4.6m for r
[tex]I_{i} = \frac{2}{5}m_{s}r^{2}\\\\ = \frac{2}{5}\times1900 kg\times (4.6 m)^{2} \\\\= 1.61 \cdot 10^{4} kgm^{2}[/tex]
The final moment of inertia of the satellite about the centre of mass
[tex]I_{f} = I_{i} + 2\timesI_{x} \\\\= 1.61 \cdot 10^{4} kgm^{2} + 2\times\frac{1}{3}m_{x}l^{2}[/tex]
Where [tex]m_{x}[/tex] is the antenna's mass and
I is the length of the antenna
[tex]I_{f} = 1.61 \cdot 10^{4} kgm^{2} + 2\times\frac{1}{3}150.0 kg\times(6.6 m)^{2} \\\\= 2.05 \cdot 10^{4} kgm^{2}[/tex]
So, the Final rotation rate of the satellite is:
[tex]I_{i}\times\omega_{i} = I_{f}\times\omega_{f} \\\\\omega_{f} = \frac{I_{i}\times\omega_{i}}{I_{f}} \\\\= \frac{1.61 \cdot 10^{4} kgm^{2}\times8.0 \frac{rev}{s}}{2.05 \cdot 10^{4} kgm^{2}} \\\\= 6.3 rev/s[/tex]
Therefore, the new rotation rate of the satellite is 6.3 rev/s.