Answer:
-17.8 V
Explanation:
The induced emf in a coil is given as:
[tex]E = \frac{-NdB\pi r^2}{dt}[/tex]
where N = number of loops
dB = change in magnetic field
r = radius of coil
dt = elapsed time
From the question:
N = 50
dB = final magnetic field - initial magnetic field
dB = 0.35 - 0.10 = 0.25 T
r = 3 cm
dt = 2 ms = 0.002 secs
Therefore, the induced emf is:
[tex]E = \frac{-50 * 0.25 * \pi * 0.03^2}{0.002} \\E = -17.8 V[/tex]
Note: The negative sign implies that the EMf acts in an opposite direction to the change in magnetic flux.