Answer:
The inner diameter is 57.3 cm
Explanation:
The inner diameter of the hollow spherical iron shell can be found using the weight of the sphere ([tex]W_{s}[/tex]) and the weight of the water displaced ([tex]W_{w}[/tex]):
[tex] W_{s} = W_{w} [/tex]
[tex] m_{s}*g = m_{w}*g [/tex]
[tex] D_{s}*V_{s} = D_{w}*V_{w} [/tex]
Where D is the density and V is the volume
[tex] D_{s}*\frac{4}{3}\pi*(\frac{d_{o}^{3} - d_{i}^{3}}{2^{3}}) = \frac{4}{3}\pi*(\frac{d_{o}}{2})^{3} [/tex]
Where [tex]d_{o}[/tex] is the outer diameter and [tex]d_{i}[/tex] is the inner diameter
[tex] D_{s}*(d_{o}^{3} - d_{i}^{3}) = d_{o}^{3} [/tex]
[tex] D_{s}*d_{i}^{3} = d_{o}^{3}(D_{s} - 1) [/tex]
[tex] 7.87*d_{i}^{3} = 60.0^{3}(7.87 - 1) [/tex]
[tex] d_{i} = 57.3 cm [/tex]
Therefore, the inner diameter is 57.3 cm.
I hope it helps you!