Respuesta :
Answer:
0.136g
Explanation:
A student dissolved 5.00 g of Co(NO3)2 in enough water to make 100. mL of stock solution. He took 4.00 mL of the stock solution and then diluted it with water to give 275. mL of a final solution. How many grams of NO3- ion are there in the final solution?
[tex]Co(NO_3)_2(aq)\rightarrow Co^{2+}(aq)+2NO_3^{-}(aq)[/tex]
Initial mole of Co(NO3)2 Â [tex]=\frac{mass}{molar mass}[/tex]
[tex]=\frac{5.00}{182.94} \\\\=0.02733mol[/tex]
Mole of Co(NO3)2 in final solution
[tex]=\frac{4.00}{100}\times 0.02733\\\\=0.04\times 0.02733\\\\= 0.001093mol[/tex]
Mole of  NO3- in final solution = 2 x Mole of Co(NO3)2
[tex]=2\times 0.001093\\\\=0.002186mol[/tex]
Mass of  NO3- in final solution is mole x Molar mass of NO3
[tex]=0.002186\times62.01\\\\=0.136g[/tex]
The final solution contains 0.24 g of nitrate ion.
Number of moles of  Co(NO3)2 =  5.00 g/183 g/mol = 0.027 moles
Number of moles = concentration × volume
concentration = Number of moles /volume
Volume of solution = 100 mL or 0.1 L
concentration = Â 0.027 moles/0.1 L = 0.27 M
Using the dilution formula;
C1V1 = C2V2
C1 = Â 0.27 M
V1 = 4.00 mL
C2 = ?
V2 = Â 275. mL
C2 = C1V1/V2
C2 = 0.27 × 4.00/ 275
C2 = 0.0039 M
Number of moles of NO3- ion in Co(NO3)2 = 0.0039 M × 62 g/mol = 0.24 g
Learn more: https://brainly.com/question/1340582