Respuesta :
Answer:
a. SST = 1816
SSR = 1511.804
SSE = 465.804
b. Coefficient of determination, R² = 0.832491079
c. The correlation coefficient r = 0.8636
Step-by-step explanation:
y = 23.194 + 0.318·x
Where:
x = Price
y = Overall score
The observed data are given as follows;
Brand Price Score
Bose 180 76
Scullcandy 150 71
Koss 95 62
Phillips/O'Neill 70 57
Denon 70 30
JVC 35 34
[tex]SST = \sum \left (y - \bar{y} \right )^{2}[/tex]= 1816
[tex]SSR = \sum \left ({y}'-\bar{y{}'} \right )^{2}[/tex] = 1511.804
[tex]SSE = \sum \left (y - {y}' \right )^{2}[/tex] = 465.804
Coefficient of determination
[tex]Coefficient \, of \, determination = \dfrac{SSR}{SST}[/tex]= 0.832
Coefficient of correlation =
[tex]r = \dfrac{n\left (\sum xy \right )-\left (\sum x \right )\left (\sum y \right )}{\sqrt{\left [n\sum x^{2}-\left (\sum x \right )^{2} \right ]\left [n\sum y^{2}-\left (\sum y \right )^{2} \right ]}}[/tex]
Ʃxy = 37500
Ʃx =600
Ʃy = 330
Ʃx² = 74950
Ʃy² = 19966
[tex]r = \dfrac{6 \left (37500 \right )-\left (600 \right )\left (330 \right )}{\sqrt{\left [6\times 74950-\left (600 \right )^{2} \right ]\left [6 \times 19966-\left (330 \right )^{2} \right ]}} = 0.8636[/tex]
