Answer:
6163.2 years
Step-by-step explanation:
A_t=A_0e^{-kt}
Where
A_t=Amount of C 14 after “t” year
A_0= Initial Amount
t= No. of years
k=constant
In our problem we are given that A_t is 54% that is if A_0=1 , A_t=0.54
Also , k=0.0001
We have to find t=?
Let us substitute these values in the formula
0.54=1* e^{-0.0001t}
Taking log on both sides to the base 10 we get
log 0.54=log e^{-0.0001t}
-0.267606 = -0.0001t*log e
-0.267606 = -0.0001t*0.4342
t=\frac{-0.267606}{-0.0001*0.4342}
t=6163.20
t=6163.20 years
PLEASE MARK BRAINLY