Answer:
Area of ΔXYZ = 35.499 cm²
Step-by-step explanation:
From the figure attached,
In triangle XOY,
Sin38° = [tex]\frac{\text{OX}}{\text{XY}}[/tex]
OX = (XY)Sin38°
OX = (9.3)Sin38°
= 5.7257 cm
Area of a triangle = [tex]\frac{1}{2}(\text{Base})(\text{Height})[/tex]
= [tex]\frac{1}{2}(\text{YZ})(\text{OX})[/tex]
= [tex]\frac{1}{2}(12.4)(5.7257)[/tex]
= 35.499 square cm
Therefore, area of the given triangle XYZ = 35.499 cm².