Solve the following quadratic equation using the quadratic formula.
5x^2– 8x+ 5 = 0
Write the solutions in the following form, where r, s, and tare integers, and the fractions are in simplest form.
R+ si/t, x=r+si/t

Respuesta :

Answer:

Either

x = 4+3i /5   or     x = 4-3i /5

Step-by-step explanation:

To solve the quadratic equation using the quadratic formula, we will follow the steps below;

write down the quadratic formula;

x = -b±√b² - 4ac   /2a

First lets compare the equation 5x² - 8x + 5 = 0  to the standard quadratic equation  ax² + bx + c

a = 5  b = -8  and c= 5

we can now proceed to substitute the above value into the quadratic formula and then solve. That is;

x = -b±√b² - 4ac   /2a

   = -(-8)±√(-8)² - 4(5)(5)   /2(5)

    = 8 ±√64-100 /10

   =8 ±√-36  /10

    = 8 ±√36 . √-1    /10                           note that √-1 = i

      =8±6i   /10

       =[tex]\frac{8}{10}[/tex]  ± [tex]\frac{6 i}{10}[/tex]

         =[tex]\frac{4}{5}[/tex] ±[tex]\frac{3i}{5}[/tex]

         

Either

x = 4+3i /5   or     x = 4-3i /5

Answer:

answer in picture

Step-by-step explanation:

Ver imagen xhighxxonxxlifex