Respuesta :

Answer:

[tex]ln(\frac{8}{5x} )=ln(8)-ln(5)-ln(x)[/tex]

Step-by-step explanation:

Use the properties of logarithms on each step:

First use the property for the logarithm of a quotient:

[tex]ln(\frac{a}{b} )=ln(a)-ln(b)[/tex]

So we get: [tex]ln(\frac{8}{5x} )=ln(8)-ln(5x)[/tex]

Now, we can expand the last term using the property of logarithm of a product:

[tex]ln(a\,*\,b)=ln(a)+ln(b)[/tex]

Therefore we write [tex]ln(5x)=ln(5)+ln(x)[/tex]

No we insert this result in the subtraction we had before:

[tex]ln(\frac{8}{5x} )=ln(8)-ln(5x)=ln(8)-(ln(5)+ln(x))=ln(8)-ln(5)-ln(x)[/tex]