Respuesta :
Answer:
0.804g of NaHCO₃ you must add
Explanation:
pKa of HCO₃⁻/CO₃²⁻ is 10.32.
It is possible to find pH of a buffer by using H-H equation, thus:
pH = pka + log [A⁻] / [HA]
Where [HA] is concentration of acid (HCO₃⁻) and [A⁻] is concentration of conjugate acid (CO₃²⁻).
Moles of CO₃²⁻ = K₂CO₃ are:
4.00g ₓ (1mol / 138.206g) = 0.0289 moles CO₃²⁻
Replacing:
10.80 = 10.32 + log [0.0289] / [HCO₃⁻]
[HCO₃⁻] = 0.009570 moles you need to add to obtain the desire pH
As molar mass of NaHCO₃ is 84.007g/mol, mass of NaHCO₃ is:
0.009570 moles ₓ (84.007g / mol) =
0.804g of NaHCO₃ you must add
Answer:
- [tex]0.8237g[/tex] of [tex]NaHCO_3[/tex] must be added
Explanation:
Second dissociation of [tex]H_2CO_3[/tex] is
[tex]HCO_3^-(aq) <-------> CO_3^2-(aq) + H^+[/tex]
[tex]Ka = [CO_3^{2-}] [H+] / [HCO_3^-] \\\\= 4.7*10^{-11}\\\\pKa = -log(4.7 * 10^{-11}) \\\\= 10.33[/tex]
[tex]pH = pKa + \frac{log([A-]}{[HA])}\\\\required pH = 10.80\\\\10.80 = 10.33 + \frac{log([A-]}{[HA])}\\\\\frac{log([A-]}{[HA])} \\\\= 0.47\\\\\frac{[A-]}{[HA]}\\\\ = 2.951[/tex]
[tex][CO_3^{2-}] / [HCO_3^-] = 2.951[/tex]
[tex][HCO_3^-] = [CO_3^{2-}]/2.951[/tex]
moles of [tex]K_2CO_3[/tex] = [tex]\frac{4}{138.206} = 0.028942mol[/tex]
moles of [tex]CO_3^{2-}[/tex] = [tex]0.028942mol[/tex]
[tex][CO_3^{2-}][/tex] = [tex]\frac{0.028942}{500} * 1000 = 0.05788M[/tex]
[tex][HCO_3^-][/tex] required = [tex]\frac{[CO32-]}{2.951} = \frac{0.05788}{2.951} = 0.01961M[/tex]
moles of [tex]HCO_3^-[/tex] required = [tex]\frac{0.01961}{1000} * 500 = 0.009805mol[/tex]
moles [tex]NaHCO_3[/tex] required = [tex]0.009805mol[/tex]
Therefore,
mass of [tex]NaHCO_3[/tex] required [tex]= 0.009805 * 84.007 = 0.8237g[/tex]
For more information, visit
https://brainly.com/subject/chemistry