In a group, 10 freshmen have mean GPA of 3.5; 20 sophomores have a mean GPA of 2.9; 25 juniors have a mean GPA of 3.2; and 15 seniors have a mean GPA of 3.4. What is the mean of the entire group

Respuesta :

Answer:

[tex] T_1 = 10*3.5 = 35[/tex]

[tex] T_2 = 20*2.9 = 58[/tex]

[tex] T_3 = 25*3.2 = 80[/tex]

[tex] T_4 = 15*3.4 = 51[/tex]

[tex] \bar X= \frac{T_1 +T_2 +T_3 +T_4}{10+20+25+15}= \frac{35+58+80+51}{10+20+25+15} = 3.2[/tex]

Step-by-step explanation:

For this case we have the following info given:

[tex] n_1= 10 , \bar X_1 = 3.5[/tex] for freshmen

[tex] n_2= 20 , \bar X_2 = 2.9[/tex] for sophomores

[tex] n_3= 25 , \bar X_3 = 3.2[/tex] for juniors

[tex] n_4= 15 , \bar X_4 = 3.4[/tex] for seniors

For this case we can use the formula for the sample mean in order to find the total of each group:

[tex] \bar X =\frac{\sum_{i=1}^n X_i}{n}[/tex]

[tex]T= \sum_{i=1}^n X_i = n *\bar X[/tex]

And replacing we got:

[tex] T_1 = 10*3.5 = 35[/tex]

[tex] T_2 = 20*2.9 = 58[/tex]

[tex] T_3 = 25*3.2 = 80[/tex]

[tex] T_4 = 15*3.4 = 51[/tex]

And the grand mean would be given by:

[tex] \bar X= \frac{T_1 +T_2 +T_3 +T_4}{10+20+25+15}= \frac{35+58+80+51}{10+20+25+15} = 3.2[/tex]