Answer: The exit temperature of the gas in deg C is [tex]32^{o}C[/tex].
Explanation:
The given data is as follows.
[tex]C_{p}[/tex] = 1000 J/kg K, Â R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
[tex]P_{1}[/tex] = 100 kPa, Â Â [tex]V_{1} = 15 m^{3}/s[/tex]
[tex]T_{1} = 27^{o}C = (27 + 273) K = 300 K[/tex]
We know that for an ideal gas the mass flow rate will be calculated as follows.
   [tex]P_{1}V_{1} = mRT_{1}[/tex]
or, Â Â Â Â m = [tex]\frac{P_{1}V_{1}}{RT_{1}}[/tex]
        = [tex]\frac{100 \times 15}{0.5 \times 300}[/tex] Â
        = 10 kg/s
Now, according to the steady flow energy equation:
[tex]mh_{1} + Q = mh_{2} + W[/tex]
[tex]h_{1} + \frac{Q}{m} = h_{2} + \frac{W}{m}[/tex]
[tex]C_{p}T_{1} - \frac{80}{10} = C_{p}T_{2} - \frac{130}{10}[/tex]
[tex](T_{2} - T_{1})C_{p} = \frac{130 - 80}{10}[/tex]
[tex](T_{2} - T_{1})[/tex] = 5 K
[tex]T_{2}[/tex] = 5 K + 300 K
[tex]T_{2}[/tex] = 305 K
      = (305 K - 273 K)
      = [tex]32^{o}C[/tex]
Therefore, we can conclude that the exit temperature of the gas in deg C is [tex]32^{o}C[/tex].