ide length


Recall that in a 30° -60° - 90° triangle, if the shortest leg


measures x units, then the longer leg measures x/5 units


and the hypotenuse measures 2x units.


(150/3 – 757) ita


(300 - 757) ft


(150/3 - 257) ft


(300 - 257) ft?



Help out

Respuesta :

Question Correction

A circle is inscribed in a regular hexagon with side length 10 feet. What is the area of the shaded region? Recall that in a 30–60–90 triangle, if the shortest leg measures x units, then the longer leg measures [tex]x\sqrt{3}[/tex] units and the hypotenuse measures 2x units.

  • [tex](150\sqrt{3}-75\pi) $ ft^2[/tex]  
  • (300 – 75Ï€) [tex]ft^2[/tex]
  • [tex](150\sqrt{3}-25\pi) $ ft^2[/tex]
  • (300 – 25Ï€) ft2

Answer:

(A)[tex](150\sqrt{3}-75\pi) $ Square Units[/tex]

Step-by-step explanation:

Area of the Shaded region =Area of Hexagon-Area of the Circle

Area of Hexagon

Length of the shorter Leg = x ft

Side Length of the Hexagon =10 feet

Perimeter of the Hexagon = 10*6 =60 feet

Apothem of the Hexagon (Length of the longer leg)

=  [tex]x\sqrt{3}[/tex] feet

[tex]=5\sqrt{3}$ feet[/tex]

[tex]\text{Area of a Regular hexagon}=\dfrac{1}{2} \times $Perimeter \times $Apothem[/tex]

[tex]=\dfrac{1}{2} \times 60 \times 5\sqrt{3}\\=150\sqrt{3}$ Square feet[/tex]

Area of Circle

The radius of the Circle = Apothem of the Hexagon [tex]=5\sqrt{3}$ feet[/tex]

Area of the Circle

[tex]=(5\sqrt{3})^2 \times \pi\\ =25 \times 3 \times \pi\\=75\pi $ Square feet[/tex]

Therefore:

Area of the Shaded region [tex]= (150\sqrt{3}-75\pi) $ Square feet[/tex]

Ver imagen Newton9022

Answer:

it’s A

Step-by-step explanation:

i took the test