Answer:
[tex]V_2=2.995L\\\\W=248.5J[/tex]
Explanation:
Hello,
In this case, for us to compute the final volume we apply the Boyle's law that analyzes the pressure-volume temperature as an inversely proportional relationship:
[tex]P_1V_1=P_2V_2[/tex]
So we solve for [tex]V_2[/tex] by firstly computing the initial pressure:
[tex]P_1=\frac{nRT}{V_1}=\frac{0.025mol*0.082\frac{atm*L}{mol*K}*(19+273.15)K}{0.050L} =11.98atm[/tex]
[tex]V_2=\frac{P_1V_1}{P_2}=\frac{11.98atm*0.050L}{0.200atm}\\ \\V_2=2.995L[/tex]
Finally, we can compute the work by using the following formula:
[tex]W=nRTln(\frac{V_2}{V_1} )=0.025mol*8.314\frac{J}{mol*K}*(19.0+273.15)K*ln(\frac{2.995L}{0.050L}) \\\\W=248.5J[/tex]
Best regards.