Answer:
The average upward force exerted by the water is 988.2 N
Explanation:
Given;
mass of the diver, m = 60 kg
height of the board above the water, h = 10 m
time when her feet touched the water, t = 2.10 s
The final velocity of the diver, when she is under the influence of acceleration of free  fall.
V² = U² + 2gh
where;
V is the final velocity
U is the initial velocity = 0
g is acceleration due gravity
h is the height of fall
V² = U² + 2gh
V² = 0 + 2 x 9.8 x 10
V² = 196
V = √196
V = 14 m/s
Acceleration of the diver during 2.10 s before her feet touched the water.
14 m/s is her initial velocity at this sage,
her final velocity at this stage is zero (0)
V = U + at
0 = 14 + 2.1(a)
2.1a = -14
a = -14 / 2.1
a = -6.67 m/s²
The average upward force exerted by the water;
[tex]F_{on\ diver} = mg - F_{ \ water}\\\\ma = mg - F_{ \ water}\\\\F_{ \ water} = mg - ma\\\\F_{ \ water} = m(g-a)\\\\F_{ \ water} = 60[9.8-(-6.67)]\\\\F_{ \ water} = 60 (9.8+6.67)\\\\F_{ \ water} = 60(16.47)\\\\F_{ \ water} = 988.2 \ N[/tex]
Therefore, the average upward force exerted by the water is 988.2 N