Respuesta :

Answer:

Explicit formula will be [tex]A_n=3^{(2-n)}[/tex]

Step-by-step explanation:

Explicit formula for a geometric sequence is given by the formula,

[tex]A_n=a(r)^{n-1}[/tex]

Here [tex]A_n[/tex] is the nth term of the sequence

a = first term of the sequence

n = number of term

Since 5th term of a geometric sequence is

[tex]A_5[/tex] = [tex]\frac{1}{27}[/tex]

First term of the sequence 'a'= [tex]\frac{1}{3}[/tex]

By substituting these values in the explicit formula,

[tex]\frac{1}{27}=a(\frac{1}{3})^{5-1}[/tex]

[tex]\frac{1}{27} =a(\frac{1}{3})^4[/tex]

a = [tex]\frac{\frac{1}{27}}{\frac{1}{81}}[/tex]

a = [tex]\frac{81}{27}[/tex]

a = 3

Therefore, explicit formula of this sequence will be,

[tex]A_n=(3)(\frac{1}{3})^{n-1}[/tex]

[tex]A_n=(3)(3)^{(-n+1)}[/tex]

[tex]A_n=3^{(2-n)}[/tex]