To test whether or not there is a difference between treatments A, B, and C, a sample of 12 observations has been randomly assigned to the three treatments. You are given the results below. Treatment Observation A 20 30 25 33 B 22 26 20 28 C 40 30 28 22 The test statistic to test the null hypothesis equals _____.

Respuesta :

Answer:

The test statistic to test the null hypothesis equals 1.059

Step-by-step explanation:

From the given information; we have:

Treatment               Observations

A                                20        30         25       33

B                                22         26        20       28

C                               40         30         28       22

The objective is to find the  test statistic to test the null hypothesis; in order to do that;we must first run through a series of some activities.

Let first compute the sum of the square;

Total sum of squares (TSS) = Treatment sum of squares [tex](T_r SS)[/tex]  +    Error sum of squares   (ESS)

where:

(TSS) = [tex]\sum \limits ^v_{i=1} \sum \limits ^{n_i}_{j-1}(yij- \overline {y}oo)^2[/tex]  with (n-1)   df

[tex](T_r SS)[/tex]   [tex]= \sum \limits ^v_{i=1} n_i( \overline yio- \overline {y}oo)^2[/tex]   with (v-1)  df

[tex](ESS) = \sum \limits ^v_{i=1} \sum \limits ^{n_i}_{j-1}(yij- \overline {y}io)^2[/tex]   with (n-v) df

where;

v= 3

[tex]n_i=[/tex]4

i = 1,2,3

n =12

[tex]y_{ij}[/tex] is the [tex]j^{th[/tex] observation for the [tex]i^{th[/tex] treatment

[tex]\overline{y}io[/tex] is the mean of the  [tex]i^{th[/tex] treatment  i = 1,2,3 ;  j = 1,2,3,4

[tex]\overline y oo[/tex]   is the overall mean

From the given data

[tex]\overline y oo = \dfrac{1}{12} \sum \limits ^3_{i=1} \sum \limits ^{4}_{j=1}(yij)^2= 27[/tex]

[tex]TSS = \dfrac{1}{12} \sum \limits ^3_{i=1} \sum \limits ^{4}_{j=1}(yij- 27)^2 = 378[/tex]

[tex]T_r SS= \sum \limits^3_{i=1}4 (\overline y io - \overline yoo)^2[/tex]

[tex]=4(27-27)^2+4(24-27)^2+4(30-27)^2 = 72[/tex]

Total sum of squares (TSS) = Treatment sum of squares [tex](T_r SS)[/tex]  +    Error sum of squares   (ESS)

(TSS) =  378 - 72

(TSS) =  306

Now; to the mean square between treatments (MSTR); we use the formula:

MSTR = TrSS/df(TrSS)

MSTR = 72/(3 - 1)

MSTR = 72/2

MSTR = 36

The mean square within treatments  (MSE) is:

MSE = ESS/df(ESS)

MSE = 306/(12-3)

MSE = 306/(9)

MSE = 34

The test statistic to test the null hypothesis is :

[tex]T = \dfrac{ \dfrac{TrSS}{\sigma^2}/(v-1) }{ \dfrac{ESS}{\sigma^2}/(n-v) } = \dfrac{MSTR}{MSE} \ \ \ \approx \ \ T(\overline {v-1}, \overline {n-v})[/tex]

[tex]T = \dfrac{36}{34}[/tex]

T = 1.059