Respuesta :
Answer:
Step-by-step explanation:
The original equation is [tex]121y''+110y'-24y=0[/tex]. We propose that the solution of this equations is of the form [tex] y = Ae^{rt}[/tex]. Then, by replacing the derivatives we get the following
[tex]121r^2Ae^{rt}+110rAe^{rt}-24Ae^{rt}=0= Ae^{rt}(121r^2+110r-24)[/tex]
Since we want a non trival solution, it must happen that A is different from zero. Also, the exponential function is always positive, then it must happen that
[tex]121r^2+110r-24=0[/tex]
Recall that the roots of a polynomial of the form [tex]ax^2+bx+c[/tex] are given by the formula
[tex] x = \frac{-b \pm \sqrt[]{b^2-4ac}}{2a}[/tex]
In our case a = 121, b = 110 and c = -24. Using the formula we get the solutions
[tex]r_1 = -\frac{12}{11}[/tex]
[tex]r_2 = \frac{2}{11}[/tex]
So, in this case, the general solution is [tex]y = c_1 e^{\frac{-12t}{11}} + c_2 e^{\frac{2t}{11}}[/tex]
a) In the first case, we are given that y(0) = 1 and y'(0) = 0. By differentiating the general solution and replacing t by 0 we get the equations
[tex]c_1 + c_2 = 1[/tex]
[tex]c_1\frac{-12}{11} + c_2\frac{2}{11} = 0[/tex](or equivalently [tex]c_2 = 6c_1[/tex]
By replacing the second equation in the first one, we get [tex]7c_1 = 1 [/tex] which implies that [tex] c_1 = \frac{1}{7}, c_2 = \frac{6}{7}[/tex].
So [tex]y_1 = \frac{1}{7}e^{\frac{-12t}{11}} + \frac{6}{7}e^{\frac{2t}{11}}[/tex]
b) By using y(0) =0 and y'(0)=1 we get the equations
[tex] c_1+c_2 =0[/tex]
[tex]c_1\frac{-12}{11} + c_2\frac{2}{11} = 1[/tex](or equivalently [tex]-12c_1+2c_2 = 11[/tex]
By solving this system, the solution is [tex]c_1 = \frac{-11}{14}, c_2 = \frac{11}{14}[/tex]
Then [tex]y_2 = \frac{-11}{14}e^{\frac{-12t}{11}} + \frac{11}{14} e^{\frac{2t}{11}}[/tex]
c)
The Wronskian of the solutions is calculated as the determinant of the following matrix
[tex]\left| \begin{matrix}y_1 & y_2 \\ y_1' & y_2'\end{matrix}\right|= W(t) = y_1\cdot y_2'-y_1'y_2[/tex]
By plugging the values of [tex]y_1[/tex] and
We can check this by using Abel's theorem. Given a second degree differential equation of the form y''+p(x)y'+q(x)y the wronskian is given by
[tex]e^{\int -p(x) dx}[/tex]
In this case, by dividing the equation by 121 we get that p(x) = 10/11. So the wronskian is
[tex]e^{\int -\frac{10}{11} dx} = e^{\frac{-10x}{11}}[/tex]
Note that this function is always positive, and thus, never zero. So [tex]y_1, y_2[/tex] is a fundamental set of solutions.