Respuesta :
Answer:
0 or 7
Step-by-step explanation:
hello,
we can write the following as n is a common factor
[tex]n^2-7n = n(n-7)[/tex]
so
[tex]n^2-7n = 0\\<=> n(n-7)=0\\<=> n = 0 \ or \ n = 7[/tex]
hope this helps
Answer:
[tex] \boxed{\sf n = 7 \ \ \ \ or \ \ \ \ n = 0} [/tex]
Step-by-step explanation:
[tex] \sf Solution \: set \: for \: equation : \\ \sf n^{2} - 7n = 0 \\ \\ \sf Factor \: n \: from \: the \: left \: hand \: side: \\ \sf n(n - 7) = 0 \\ \\ \sf Split \: into \: two \: equations: \\ \sf n - 7 = 0 \: \: \: \: or \: \: \: \: n = 0 \\ \\ \sf Add \: 7 \: to \: both \: sides: \\ \sf \boxed{ \sf n = 7} \: \: \: \: or \: \: \: \: n = 0[/tex]