Respuesta :

Answer:

x = 2 is the solution of the given equation

Step-by-step explanation:

Step(i):-

Given equation

  [tex]\sqrt{x+6-4} = x[/tex]

squaring on both sides , we get

[tex](\sqrt{x+2})^{2} = x^{2}[/tex]

⇒ x + 2 = x²

⇒x² - x -2 =0

Step(ii):-

  Given x² - x -2 =0

⇒ x² - 2x + x - 2 =0

⇒ x ( x-2) + 1(x - 2) =0

⇒ (x + 1) ( x-2) =0

⇒ x = -1 and x =2

x = 2 is the solution of the given equation

Verification:-

[tex]\sqrt{x+6-4} = x[/tex]

Put x= 2

[tex]\sqrt{2+6-4} = 2[/tex]

[tex]\sqrt{4} = 2[/tex]

 2 = 2