Respuesta :

Answer:  The correct answer is:  " 2x² " .

________________________________

Step-by-step explanation:

________________________________

We are asked:  "What is the sum of:  "x + x² + 2" and "x² − 2 − x" ?

Since we are to find the "sum" ;

  →  We are to "add" these 2 (two) expressions together:

     →     (x + x² + 2) +  (x² − 2 − x) ;

Note:  Let us rewrite the above, by adding the number "1" as a coefficient to:  the values "x" ; and "x² " ;  since there is an "implied coefficient of "1" ;

            → {since:  "any value" ; multiplied by "1"; results in that exact same value.}.

            →     (1x + 1x² + 2) +  (1x² − 2 − 1x) ;

Rewrite as:

             →     1x + 1x² + 2) +  (1x² − 2 − 1x) ;

Now, let us add the "coefficient" , "1" ; just before the expression:

             "(1x² − 2 − 1x)" ;  

         {since "any value", multiplied by "1" , equals that same value.}.

And rewrite the expression; as follows:

            →     (1x + 1x² + 2) +  1(1x² − 2 − 1x) ;

Now, let us consider the following part of the expression:

                     →  " +1(1x² − 2 − 1x) " ;

________________________________

Note the distributive property of multiplication:

   →  " a(b+c) = ab + ac " ;

and likewise:

   →  " a(b+c+d) = ab + ac + ad " .

________________________________

So; we have:

→  " +1(1x² − 2 − 1x) " ;

  = (+1 * 1x²)  +  (+1 *-2) + (+1*-1x) ;

  =       + 1x²    +    (-2)     +  (-1x) ;

  =       +1x²    −    2   −  1x  ;

  ↔    ( + 1x²  −  1x  −  2)

Now, bring down the "left-hand side of the expression:

1x + 1x² + 2 ;

and add the rest of the expression:

     →  1x  +  1x²  +  2  +   1x²  −  1x  −  2 ;

________________________________

Now, simplify by combining the "like terms" ; as follows:

   +1x² + 1x² = 2x²  ;

   +1x −  1x = 0 ;  

   + 2 −  2  = 0 ;

________________________________

The answer is: " 2x² " .

________________________________

Hope this is helpful to you!

   Best wishes!

________________________________

Answer:

The correct answer is:  " 2x² " .

________________________________

Step-by-step explanation:

________________________________

We are asked:  "What is the sum of:  "x + x² + 2" and "x² − 2 − x" ?

Since we are to find the "sum" ;

 →  We are to "add" these 2 (two) expressions together:

    →     (x + x² + 2) +  (x² − 2 − x) ;

Note:  Let us rewrite the above, by adding the number "1" as a coefficient to:  the values "x" ; and "x² " ;  since there is an "implied coefficient of "1" ;

           → {since:  "any value" ; multiplied by "1"; results in that exact same value.}.

           →     (1x + 1x² + 2) +  (1x² − 2 − 1x) ;

Rewrite as:

            →     1x + 1x² + 2) +  (1x² − 2 − 1x) ;

Now, let us add the "coefficient" , "1" ; just before the expression:

            "(1x² − 2 − 1x)" ;  

        {since "any value", multiplied by "1" , equals that same value.}.

And rewrite the expression; as follows:

           →     (1x + 1x² + 2) +  1(1x² − 2 − 1x) ;

Now, let us consider the following part of the expression:

                    →  " +1(1x² − 2 − 1x) " ;

________________________________

Note the distributive property of multiplication:

  →  " a(b+c) = ab + ac " ;

and likewise:

  →  " a(b+c+d) = ab + ac + ad " .

________________________________

So; we have:

→  " +1(1x² − 2 − 1x) " ;

 = (+1 * 1x²)  +  (+1 *-2) + (+1*-1x) ;

 =       + 1x²    +    (-2)     +  (-1x) ;

 =       +1x²    −    2   −  1x  ;

 ↔    ( + 1x²  −  1x  −  2)

Now, bring down the "left-hand side of the expression:

1x + 1x² + 2 ;

and add the rest of the expression:

    →  1x  +  1x²  +  2  +   1x²  −  1x  −  2 ;

________________________________

Now, simplify by combining the "like terms" ; as follows:

  +1x² + 1x² = 2x²  ;

  +1x −  1x = 0 ;  

  + 2 −  2  = 0 ;

________________________________

The answer is: " 2x² " .

Step-by-step explanation: