contestada

This is one of a pair of problems that treat the same situation. This one uses a quantum mechanical analysis, while the other uses a classical wave analysis. We encourage you to compare the words used in the two. An unpolarized photon beam is incident on the usual 2-slit apparatus, with a screen behind. One slit has a linear polarizer aligned in the H direction, while the other has a linear polarizer rotated by 45°. 1) What is the ratio of minimum to maximum photon probability densities in the interference pattern on the screen? min/max =

Respuesta :

Answer:

The ratio is  [tex]\frac{I_{min}}{I_{max}} = 0.029[/tex]

Explanation:

Let assume that the intensity of the unpolarized  photon beam is  [tex]I_o[/tex]

   The through the linear polarizer is mathematically represented as

       [tex]I_1 = I_ocos^2(\theta )[/tex]

Here [tex]\theta = 0[/tex] given that the polarizer is  linear

   So

        [tex]I_1 = I_o[/tex]

The intensity of the [tex]I_o[/tex]  emerging from the polarizer oriented 45° to the horizontal is  

         [tex]I_2 = I_o cos^2(45)[/tex]

       [tex]I_2 = \frac{I_o}{2}[/tex]

The maximum photon probability density is  mathematically represented as

          [tex]I_{max} = ( \sqrt{I_1} + \sqrt{I_2})^2[/tex]

=>      [tex]I_{max} = ( \sqrt{I_o} + \sqrt{\frac{I_o}{2} })^2[/tex]

The minimum photon probability density is  mathematically represented as

        [tex]I_{max} = ( \sqrt{I_1} - \sqrt{I_2})^2[/tex]

        [tex]I_{max} = ( \sqrt{I_o} - \sqrt{\frac{I_o}{2} })^2[/tex]

The ratio of minimum to maximum is mathematically represented as

          [tex]\frac{I_{min}}{I_{max}} = \frac{ I_o - \frac{I_o}{I_2} }{I_o + \frac{I_o}{I_2}}[/tex]

         [tex]\frac{I_{min}}{I_{max}} = \frac{I_o (1 - \frac{1}{\sqrt{2} } ) }{I_o(1 + \frac{1}{\sqrt{2} })}[/tex]

        [tex]\frac{I_{min}}{I_{max}} = \frac{(\sqrt{2} - 1 )^2}{(\sqrt{2} + 1 )^2}[/tex]

       [tex]\frac{I_{min}}{I_{max}} = \frac{0.17157}{5.8284}[/tex]

       [tex]\frac{I_{min}}{I_{max}} = 0.029[/tex]